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For small-amplitude vortical and entropic unsteady disturbances of potential flows, 
Goldstein proposed a partial splitting of the velocity field into a vortical part u(I) that 
is a known function of the imposed upstream disturbance and a potential part V$ 
satisfying a linear inhomogeneous wave equation with a dipole-type source term. The 
present paper deals with flows around bodies with a stagnation point. It is shown 
that for such flows u(I) becomes singular along the entire body surface and its wake 
and as a result V$ will also be singular along the entire body surface. The paper 
proposes a modified splitting of the velocity field into a vortical part dR) that has 
zero streamwise and normal components along the body surface, an entropy- 
dependent part and a regular part V$* that satisfies a linear inhomogeneous wave 
equation with a modified source term. 

For periodic disturbances, explicit expressions for zdR) are given for three- 
dimensional flows past a single obstacle and for two-dimensional mean flows past a 
linear cascade. For weakly sheared flows, i t  is shown that if the mean flow has only 
a finite number of isolated stagnation points, dR) will be finite along the body 
surface. On the other hand, if the mean flow has a stagnation line along the body 
surface such as in two-dimensional flows then the component of dR) in this direction 
will have a logarithmic singularity. 

For incompressible flows, the boundary-value problem for $* is formulated in 
terms of an integral equation of the Fredholm type. The theory is applied to a typical 
bluff body. Detailed calculations are carried out to show the velocity and pressure 
fields in response to  incident harmonic disturbances. 

1. Introduction 
Streaming motions with uniform upstream conditions have been extensively 

studied in fluid mechanics. At high speed, the Reynolds number associated with the 
flow is large and the effects of viscosity are confined to only certain regions of the flow 
(boundary-layers, wakes, etc.) outside of which the fluid can be treated as inviscid. 
Moreover, for flows without shock waves the uniform upstream conditions lead to 
irrotational motion in the outer inviscid region. I n  many instances there are steady 
or unsteady disturbances imposed on the uniform upstream flow conditions. The 
most common are due to flow turbulence while others are caused by the presence of 
certain boundaries or by the interaction with structural elements. These disturbances 
invariably produce significant changes in the transport properties of the fluid near 
the body and often completely alter the entire flow pattern by causing instability and 
separation. 
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An important example of streaming motions with small non-uniform and non- 
steady disturbances is encountered in unsteady aerodynamics - a discipline con- 
cerned with the high-speed motion of a streamlined body (airfoil) in a non-uniform 
flow. When the flow generated by the undisturbed motion has no strong shock waves, 
it can be well approximated by an irrotational flow except in the thin boundary layer 
surrounding the body and the wake. Because of the relative high speed of the fluid 
motion, i t  is reasonable to assume in many instances that the flow disturbances are 
carried by the potential flow and to  neglect the interaction between the disturbances 
themselves, and their eventual decay. This leads to the linearization of the flow field 
with respect to the potential flow, which is often a common feature to many 
mathematical treatments in unsteady aerodynamics. 

Until recently, unsteady aerodynamics dealt primarily with flat plate airfoils and 
hence the governing equations of the flow were linearized about a uniform parallel 
mean flow. The standard mathematical method for obtaining solutions to these 
equations consisted of splitting the velocity field into solenoidal and irrotational 
parts. The former represents a purely convected vorticity wave whose mathematical 
form is readily determined from the disturbed upstream conditions. The irrotational 
part satisfies a constant-coefficient homogeneous wave equation which reduces to a 
Laplace equation for incompressible flows. The first solution of this kind was 
obtained by Sears (1941) for a flat plate moving in an incompressible periodically 
distorted flow. 

The mean potential flow around real airfoils is not uniform especially for lifting 
airfoils. Studying the interaction between a periodic two-dimensional gust with a 
lifting airfoil moving in incompressible flow, Goldstein & Atassi (1976) showed that 
the oncoming gust is distorted by the mean potential flow about the airfoil. This 
causes significant variation in both the amplitude and the phase of the unsteady 
velocity field associated with the gust. Their results, as well as the results obtained 
later by Atassi (1984) for cambered airfoils a t  non-zero angle of attack to the mean 
potential flow, show that the gust distortion has a significant effect on the airfoil 
response. 

Another important example of streaming motions with small unsteady dis- 
turbances is provided by weakly turbulent flows around various bodies. It is again 
frequently possible to assume that the turbulent component’ of the flow is primarily 
distorted by changes in the mean flow, and to linearize the relevant motion with 
respect to a mean potential flow. This was first attempted by Prandtl (1933) and 
Taylor (1935). Later, Ribner & Tucker (1953) and Batchelor & Proudman (1954) 
studied the reduction in turbulence intensity due to a contraction in the stream. The 
latter introduced the term ‘rapid distortion ’ to  characterize this linear approach to 
the study of turbulent motions. Hunt (1973) generalized this theory to deal with 
incompressible flows around bluff bodies. He used the ‘traditional splitting’ of the 
velocity field into irrotational and solenoidal components and consequently was led 
to the mathematical problem of solving three Poisson’s equations. 

A unified approach to streaming motions with small unsteady disturbances 
imposed on the upstream flow was proposed by Goldstein (1978). He considered both 
vortical and entropic distortions of potential flows a t  arbitrary Mach number, and 
decomposed the unsteady velocity field into the sum of (i) a vortical disturbance uCv) 
that, is completely decoupled from the fluctuations in pressure or from any other 
thermodynamic property, and whose expression is a known function of the imposed 
upstream disturbance velocity, (ii) an entropy-dependent disturbance u(’) whose 
expression is a known function of the imposed upstream entropy disturbance, and 
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(iii) an irrotational disturbance V$ that produces no entropy fluctuations and is 
completely determined by a single inhomogeneous convective wave equation. The 
known expressions for zdV) and u(’) also involve the Lagrangian coordinates of the 
mean flow and their spatial gradients. The dipole source term in Goldstein’s wave 
equation depends on the sum u(’) of the first two disturbances and thus there is a 
partial coupling between the three components of the unsteady motion. Goldstein’s 
decomposition of the velocity field reduces the mathematical problem for this kind 
of weakly distorted streaming motion to that of solving a single convected wave 
equation. This significantly simplifies the analytical treatments and the numerical 
procedures used to study such flows. For example, Goldstein’s procedure leads to a 
single Poisson’s equation for three-dimensional incompressible flows while Hunt’s 
approach led to three such equations. 

The present paper deals with this kind of weakly distorted streaming motion round 
bluff and streamlined bodies. The associated mean potential flow usually has a 
frontal stagnation point where the mean velocity vanishes and the Lagrangian 
coordinates and therefore u(I) become singular and remain so along the entire body 
surface. Since the normal component of the total disturbance velocity must vanish 
at the body surface, the irrotational velocity V$ must have a cancelling singular 
behaviour near the body surface. This makes it difficult to use Goldstein’s approach 
directly to calculate this important class of flows numerically. 

One purpose of the present paper is to modify Goldstein’s partial splitting for flows 
with a leading stagnation point or line in a way that removes the singular and 
indeterminate character of the resulting boundary-value problem for such flows. 
Thus, it is shown that the disturbance velocity field can be split into (i) a part u ( ~ )  
whose expression is a known function of the upstream disturbances and whose 
normal and streamwise components vanish along the entire body surface and its 
wake, (ii) an entropy dependent disturbance whose expression is a known function 
of the imposed upstream entropy disturbances, and (iii) an irrotational part whose 
potential function satisfies Goldstein’s wave equation with a modified source term. 

For upstream periodic disturbances, explicit expressions for zdR) are derived for a 
single obstacle in a three-dimensional flow and for a linear cascade of obstacles in a 
two-dimensional mean flow. 

The present approach is also applied to the case of weakly sheared steady flows. 
After deriving the general expression for dR), it is shown that dR) is finite along the 
body surface when the mean flow has only a finite number of isolated stagnation 
points. On the other hand, when the mean flow has a stagnation line along the body 
surface such as in two-dimensional and certain axisymmetric flows, the component 
of dR) parallel to the stagnation line will have a logarithmic singularity along the 
entire body surface (Lighthill 1956). This singularity cannot be removed since the 
total perturbation velocity u itself has such a singularity. 

Finally, in $4 the theory is applied to incompressible flows, in which case the 
governing equation reduces to a single Poisson’s equation. Green’s theorem is used 
to derive an integral equation for flows around bluff and streamlined bodies. The 
total unsteady velocity field is given in terms of quadratures for the case of a two- 
dimensional bluff body. Numerical calculations of the unsteady velocity and pressure 
fields are carried out for periodic disturbances around a typical bluff body 
particularly near the stagnation point. 
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2. Goldstein's splitting of the disturbance velocity 
Consider a potential streaming motion around an obstacle and suppose that small 

vortical and entropic disturbances are imposed on the upstream flow. Let IT, be t,he 
constant upstream velocity and let x = {x,, x,, x,} be Cartesian coordinates with the 
x,-axis in the upstream mean velocity direction. Then far upstream (2, --f - m )  the 
total velocity field V and the entropy S must be of the form 

(2.1) 

(2.2) 

Here i is a unit vector in the x,-direction and t is the time. u, and s, can be any 
functions of their arguments with the restriction that u, be solenoidal, 

V = iU,  +u,(x,- U ,  t ,  xp, x,), 

s = s,(xl - u, t ,  x,, 2,). 

v u, = 0. (2.3) 

Goldstein (1978) showed that the resulting perturbation velocity u = {ul, up,  zc,} 

(2.4) 

can be written a t  any point of the flow as 

u = u(I) + V$, 
where u(I) is a rotational disturbance whose expression is a known function of the 
imposed upstream disturbances. V$ is related to the perturbatZion pressure p' by 

where po = po(x)  is the mean flow density and D0/Dt is the convective derivative 
based on the mean flow velocity U = { U l ,  U,, U,}. u(I) = {u~'),u',",uf)) is given by 

where @ is the mean flow velocity potential, cp  is its specific heat at constant pressure 
(assumed to be constant) and dH) = {u(lH),uLH),uiH)) is given by 

ax 
axi 

.IH) = A(X- iU, t )*-  for i = 1 ,2 ,3 ,  (2.7) 

where (2.8) 

The components of the vector (X- iU, t )  are essentially Lagrangian coordinates of 
the mean flow fluid particles. The components of X = {X,,X,,X,) are defined as 
follows. X,(xl, x,, x,) and X3(xI, xp, x,) are independent integrals of the equations 

A ( X -  iU, t )  = u,(X- iU, t )  - i(U,/2cp) s,(X- iU, t ) .  

such that X, -+ x,, X, --f x, as x1 + - co. (2.10) 

Thus the mean flow streamlines lie along the intersections of surfaces X, = constant 
and X, = constant. The equations for the mean flow streamlines in terms of x, can 
be written as 

(2.11) 
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X J U ,  is the Lighthill (1956) ‘drift ’ function 

The change in A between any two points of a streamline is equal to the time it  takes 
a mean flow fluid particle to traverse the distance between those two points. 

Finally, the only unknown quantity is the perturbation potential $ which satisfies 
the linear inhomogeneous wave equation 

(2.13) 

where co = co(x) is the mean flow sound speed. For a rigid obstacle, the boundary 
condition a t  the obstacle surface C is 

n. V# = -n. u(I) for ~ E C .  (2.14) 

In  addition $ ( x ,  t )  + O  as x1 -+ - m. (2.15) 

3. Modified splitting for flows round bodies 
When the fluid motion is streaming around a body, there is usually a front 

stagnation point S on the body surface. I n  this case the ‘drift ’ function A will develop 
a logarithmic singularity a t  S ,  that will remain along the entire body surface and its 
wake if any. Thus the argument X, - U ,  t of the quantities introduced in (2.6)-(2.8) 
will be infinite. u,(X-iu, t )  and s,(X-iU, t )  will then be indeterminate for periodic 
disturbances. Moreover the rotational velocity u(’) will have a reciprocal singularity 
along the entire body surface, since (2.7) shows that, in general dH) behaves as VX,. 

Turning to  the boundary-value problem for the perturbation potential q5, we note 
that the right-hand side of (2.14) has, in general, a reciprocal singularity along the 
boundary. Then, recognizing that the total velocity u cannot have such a strong 
singularity on the body surface, we conclude that the dominant singular behaviour 
of u(I) must be cancelled by V#. These features make it difficult to use Goldstein’s 
approach when numerically calculating the unsteady distorted flows over bodies 
with a stagnation point S. 

I n  what follows we shall show that it is possible to find a potential velocity field 
that produces no pressure and that cancels the singular behaviour of the normal 
component of u(’) along the body surface and its wake. The unsteady disturbance 
velocity can therefore be expressed as the sum of (i) a part that is a known function 
of the upstream disturbances and whose normal and streamwise components vanish 
along the entire body surface and its wake, (ii) an entropy dependent disturbance 
whose expression is a known function of the imposed upstream entropy disturbance, 
and (iii) an irrotational part whose potential function satisfies Goldstein’s wave 
equation with a modified source term. 

We start by analysing the behaviour of A near a stagnation point. 

3.1. The ‘drift’ function near a stagnation point 
Consider the mean potential flow around a surface Z and let SEE be a stagnation 
point near which C is assumed t o  be smooth (figure 1). Let (z, n, b)  be the unit vectors 
of an orthogonal curvilinear coordinate system such that 7 is in the direction of the 
mean flow velocity, n in the direction of the outer normal to  C and b = z x n. At 8, 
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FIGURE 1. Coordinate system at the stagnation point. 

this system is denoted (r,,  no, b,). Let (s ,  n, 6 )  be the coordinates of a point M near C 
with respect to ( r , n , b )  and let (so,no,b,) and (Uo, V,, W,) be, respectively, the 
coordinates of M and the components of the mean velocity U a t  M with respect to 
(z,, no, bo). Since a t  the stagnation point the two boundaries of the streamline cut a t  
right angles, no is in the direction opposite to that of the mean flow velocity just 
upstream of S. As a result, the partial derivatives of V, with respect to so and 6,  
vanish a t  S and the leading term of the expansion of V, near S is given by 

where 

n 

a, 
V, = A+ ..., 

(3.2) 

and U = lq. Substituting (3.1) into (2.12) to  evaluate A near S, we find 

A = aolnn,+d"(X,,X,,X,), (3.3) 

where 2 is a regular function of its arguments. Hence, 

Thus, as a fluid particle near S moves close to  Z, the leading term in i3A/ano depends 
only on no. It follows immediately that as the fluid particles move close to Z away 
from S ,  we can write, 

aA a 
- = A + .  ... 
an n (3.5) 

For two-dimensional and axisymmetric flows, we can define a stream function 
Y = Y(s, n) and rewrite (3.5) in terms of Y 

where Y(O) denotes the value of Y a t  Z. 

3.2. A uniformly valid splitting of the velocity field 
We shall now show that it is possible to construct a potential velocity field that 
cancels the singular behaviour of the normal component of u(') along the body surface 
C and the wake W .  To this end, we first note that since V@ - n = 0 on C and W ,  (2.6) 
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shows that the normal component of u(I) is equal to that of the vortical velocity dH) 
which is a particular solution of the first-order homogeneous equation 

D,u'"'+u'h'.vu=o. Dt (3.7) 

Equation (3.7) can be satisfied by a potential field Vd if 

which implies that 6 = d ( X -  iU, t ) .  Note that the streamlines along the body 
surface are characteristics of (3.7) and (3.81. However, since both dH) and V 4  are 
solutions of (3.7), a particular function I# can be constructed by imposing the 
additional condition that its normal gradient cancels that of dH) along Z and W ,  i.e. 

(u (H)+vJ) -~=o  onC++,  (3.9) 

Equation (3.9) should be understood as the limit as we move close to Z and W .  Note 
that since a streamline along Z is a characteristic of (3.7), the boundary-value 
problem for 6 is, in general, understated. Using (2.7), we write (3.9) as 

= O  o n Z + W ,  
i=l 

(3.10) 

where A = {Al,A2,A3). Then since aX1/an is singular along Z and W ,  (3.10) implies 
that  

A , + - = O  ad o n Z + W .  (3.1 1) 

Since X, and X, are independent of s and aX,/as = 1/U (which is only singular a t  

ax1 

S ) ,  the streamwise component of u ( ~ ) + V ~ ,  

(3.12 

must vanish by virtue of (3.11), i.e. 

(dH) +v$) * 7 = o on C+ W .  (3.13) 

Thus the streamwise and normal components of the velocity field 

are not only non-singular but actually vanish at Z and W .  Note that the b- 
component of dH) may still have a singular or indeterminate behaviour depending 
on the functions A, ,  A, ,  A,. 

We therefore propose the following splitting of the disturbance velocity field 

where dR) satisfies the equation 

(3.15) 

(3.16) 
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The potential function #* satisfies the equation 

and the boundary conditions 
V # * . n = O  o n E ,  (3.20) 

A[V#* - n] = 0 on W ,  (3.21) 

and v#*+-v$ asxl+-co. (3.22) 

where A denotes the jump across the wake. 
It is important to note that for the determination of #*, (3.20) and (3.21) remove 

the major difficulty associated with the singular behaviour of X, along C+ W .  Only 
the source term in (3.19) may be singular along C + q .  Moreover, the order of the 
singularity is lower than that of the source term in (2.13). These features make the 
present splitting particularly suitable for numerical calculations of subsonic and 
transonic (with weak shocks) flows. In this case, the mean potential flow is given by 
numerical codes and an accurate resolution of the flow quantities near the body 
surface is usually difficult to achieve. A numerical procedure based on the present 
method will not be very sensitive to  the detail of the mean Aow near the body surface. 

We now turn to the determination of 6. First, we note that the boundary 
conditions (3.17) and (3.18) are not equivalent t o  each othcr. It is easily seen that 
(3.18) always implies (3.17). The reciprocal is not true. We can satisfy (3.17) by 
taking = &, where 

dl = -1 A,(z’,X,,X,)dz’. (3.23) 
x,-ri,t 

The rotational velocity in the direction normal to C is 

(3.24) 

where we have set ci = A , + L  ad (i = 2,3) .  (3.25) 

This removes the dominant singularity of dH) which is of the order of that  of VX,, 
but depending on the upstream conditions, ci may still have a logarithmic singularity 
for sheared flows or be indeterminate for periodic disturbances. The singular 
behaviour of the component normal to E of the rotational velocity d’) is only 
completely eliminated when 6 satisfies (3.18). We may write 

axi 

6=4,+d2, (3.26) 

where &(X-iU,t) is a function which, in view of (3.11) and (3.23), has a const,ant 
value along C + W .  Substituting (3.26) into (3.10), we arrive a t  

(3 .27)  
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Noting from (3.11) and (3.23) that near ,Z 

’62  AX,+ AX, + . . . __-  -- axl axlax, ax, ax3 
and using (3.5) we arrive a t  

(3.28) 

(3.29) 

Substituting (3.29) and (3.25) into (3.27) and using (3.23), we obtain after 
rearrangement 

(3.30) 

Equation (3.30) provides a boundary condition for 6 on 2‘. However, since this 
condition is given along a characteristic of (3.8), the boundary-value problem for 6 
is understated and the expression for $ cannot be entirely determined from (3.30). 
Nevertheless, we note that the quantity inside the brackets is a total differential, and 
since A,  and A ,  are evaluated along Z, we can therefore satisfy (3.30) near X ,  = Xio) 
and X ,  = Xio) by 

(3.31) 

where we have set 

AF F(X , -  Umt ,X2 ,X3) -F(X l - -  U ,  t ,X~o’ ,X$o)) .  (3.32) 

A d  may be analytically continued upstream of the body where the mean flow 
conditions are uniform. Thus, we obtain, after noting that 62 may be taken to be zero 
along Z, 

A , (x’, Xio) ,  X p ) )  dx’ 
= -rmt 

where 
1 

B(X,-U,t,X,,X,) = A A l + -  (A,AX,+A,dX3). 
a0 u, (3.34) 

Equation (3.33) is valid for any three-dimensional potential mean flow and any 
vortical and entropic upstream disturbances. The extension of the definition of 6 to 
any X 2  and X, can be made to accommodate certain conditions for specific problems. 
For a mean flow past a cylinder with generator in the X,-direction, we can take 
X ,  = Y,  X ,  = x3. Then X p )  = x3 and the last term in (3.34) completely vanishes. 

3.3. Periodic disturbances 
When the upstream disturbances are periodic, we can, without loss of generality, 
consider incident harmonic disturbances of the form 

u, =aexp[ik.(x-iU,t)] a s q + - c o ,  (3.35) 

s, = b exp [ik (x- iU, t ) ]  as x1 +- co, (3.36) 
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where a = {al,  a,, a,}, k = {kl, k,, k,) and b are constants satisfying the continuity 
condition 

a . k = 0 .  (3.37) 

Substituting (3.35) and (3.36) into (2.8), we obtain 

A(X-iU,t)  = a*exp[ik - (X- iU , t ) ] ,  (3.38) 

where we have set a* = {a:,a,*,a,*} = a-i(bU,/Zc,). (3.39) 

Equation (3.33) can then be readily integrated and yields the following local 
expansion for 6 near a streamline X ,  = Xio) and X, = Xio) 

+.... A A ,  -ik,(A,dX,+A,dX,) 
1 + ia, U ,  k ,  

For a single obstacle we can extend 4 for any X ,  and X ,  by taking 

(3.40) 

-exp ( -ik2(X2-Xp)))) 

C* 

k3 

+3(1-exp (-ik,(X,-X?)))) exp{i[k. (X-ZJ , t ) ] ) ,  (3.41) 

where we have set c: = (a,*k,-a:k,) (i = 2 ,3 ) .  (3.42) 

For a mean flow past a cylinder with generator in the X,-direction, X, = X$') = 2,. 
Thus the coefficient of c$ vanishes. 

For a linear cascade with a spacing s* perpendicular to the upstream mean flow, 
$ must vanish a t  all the cascade elements. This periodicity condition is satisfied by 

2n qj = L{af+i 2n( 1 + s * c ~ *  ia, U ,  k,) sin [r * U ,  ('Y- Y'(O))]} exp [ik - (X- iU ,  t ) ] .  (3.43) 
kl 

Note that for periodic disturbances the component of dR) in the b-direction will not 
be singular but will have an indeterminate phase. 

3.4. Weakly sheared Jlows 
The present theory can also be readily applied to steady potential flows with imposed 
upstream vortical and entropic disturbances. In  this case, the upstream conditions 
(2.1) and (2.2) do not depend on time and as a result (2.8) depends only on X, and 
X,. As an example, we consider a weakly sheared flow past an obstacle (figure 2) in 
which the upstream velocity field is a parallel flow 

(3.44) V = iU, + ( e ,  xz + e,  x,) i, 

where e,  and e3 are small constants. Then substituting the second term of the right- 
hand side of (3.44) into (2.8) and evaluating (2.7) we obtain 

u(') = (e ,  X, + e,X,) VX,. (3.45) 

The expression for 6 is also readily obtained 

6 = - (e,X(,O) + e,Xi0)) (X, - U ,  t )  -ao U,[e,(X,-Xf')) +e3(X3-Xio))].  (3.46) 
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J 
x3 

t x z  

- 
FIGURE 2. Body in a transversely sheared Aow. 

The expression for the velocity field dR) is obtained by adding (3.45) to the gradient 
of (3.46) 

+[e2(X,-X~o))+e,(X,-X$"))]VX,, (3.47) 

dR) is the rotational velocity whose streamwise and normal components vanish at 
the surface of the obstacle and its wake. 

We now examine the disturbance velocity component in the b-direction. If the 
mean potential flow has only a finite number of isolated stagnation points, then Xio) 
and Xp) are constant and the rotational velocity (3.47) reduces to 

U(R) = - a, U,(e2VX,+e,VX,)+[e,(X2-X~))+e,(X,-X~o))]VX,. (3.48) 

In  general this velocity isfinite and not singular in the b-direction. On the other hand 
if the mean flow has a stagnation line along the surface such as in two-dimensional 
and certain axisymmetric flows, then i3Xio)/ab and aXp)/ab are, in general, not zero 
and as a result the disturbance velocity component in the b-direction will be 
proportional to XI and thus will have a logarithmic singularity along the entire body 
surface. 

For a two-dimensional mean flow about a cylinder with generator in the 5,- 

direction, we can take X, = !Plum, Xio) = !Fo)/Um, X ,  = Xr) = 2,. Thus (3.47) 
reduces to 

(3.49) 

where i3 is a unit vector in the x,-direction. The potential velocity field satisfies (3.19) 
and boundary conditions (3.20) to (3.22). It is often convenient to introduce a 
potential field that vanishes a t  infinity. This is done by writing 

$* = e,(x,/U,) (@- CF, t )  + e2[ y/co)(@/Um -t-a,) +ao !PI + $:. (3.50) 

Then $* - $: --f - 6 as x1 + - 00. As a result, the boundary conditions for 6: are 

w 
= - e  a - forxEC, 

an 'an  
(3.51) 

and V$+O a s x l + - m .  (3.52) 

Note that on C, aYpn = +U.  
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For an incompressible flow sheared only in the x,-direction ( e2  = 0) it is easy to 
show that V dR) = 0, and that 9; satisfies the Laplace's equation with homogeneous 
boundary conditions. Hence q5; = 0. In  this case the total disturbancc velocity is 
given by 

(3.53) 

(3.54) 

u3 = e3 (@/"m-q, (3.55) 

which reproduces the result of Lighthill (1956). 

4. Incompressible flows 
When the mean flow Mach number is small and the frequency associated with the 

unsteady flow is not too large, the fluid motion is well approximated by that of an 
incompressible fluid. In this case c, = 00 and po = constant. Equation (3.19) is thus 
reduced to a. Poisson equation 

with boundary conditions (3.20) t o  (3.22). It is however more convenient to introduce 
the function 4' whose gradient vanishes far upstream 

#! = $*+&, 
where Jm is a regular function such that 

~(6-6,) -20 as x1 +- 00. 

The unknown function $' satisfies the equation 

VZ#' = - v .  u, 

where we have set 

Using (3.20) and (3.21), the boundary conditions for q5' are 

and 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.7) 

where A#' and A$m stand for the jump of 4' and 6, across the wake, and since far 
upstream u, --f u, and V - u, + 0, we can impose the condition 

# ' + O  a s x l + - m .  (4.8) 

4.1, Integral formulation 
In many applications, it is more convenient to solve an integral equation numerically 
than a partial differential equation. To construct the integral equation for q5' with 
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v; a = - m7c6(x0 - x), 
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conditions (4.6)-(4.8), we first introduce the Green function G(x, x,) solution of the 
equation 

(4.9) 

where 6 is Dirac’s function, m = 2 for two-dimensional flows and m = 4 for threc- 
dimensional flows, x, is the observation point and x is the source point. It is shown 
in Appendix A that if the upstream disturbance u, is such that the volume integral 

Jvum.  V,C:du 

exists, then $’ satisfies the following integral equation 

(4.10) 

(4.11) 

“V is the volume outside Z and W .  V, and a/an, denote, respectively, thc gradient 
and normal derivative with respect to the variable xu. 

If the body extends to infinity downstream and there is no wake, the wake 
integrals in (4.1 1 )  vanish. In  this case it may be advantageous to determine the Green 
function such that 

- = 0  forx,EL‘. (4.12) 
ac 
an, 

Then (4.13) 

and the problem can be solved by quadratures. In  general, however, it is preferable 
to consider the free-space Green function since in this case 

AG = 0 for X,EW.  (4.14) 

The last integral of (4.11) vanishes because of (4.7) and we have the following integral 
equation for $’, 

(4.15) 

Note that in spite of the singularity of G as x, + x, in general, the integrals in (4.15) 
exist and therefore (4.15) is an integral equation of the Fredholm type. The jump of 
#i across the wake can be obtained by using the condition that the pressure is 
continuous. For periodic disturbances of the form (3.35), we obtain 

1 1 aG 
$‘(x , t )  =-- u , * V , G ~ V + -  #’-dg. 

mx L mn:S,+, an0 

(4.16) 

where C, is a constant to be determined by Kelvin’s theorem. 

4.2. Flows past a blu8 body 

As an illustration of the general theory we study the flow past a bluff body in the 
(x, y)-plane with emphasis on the flow behaviour near the stagnation point. We consider 
a relatively simple two-dimensional bluff-body shape extending to infinity with finite 
width. For such a body the steady mean Aow is well approximated by a potential 
flow. For simplicity, we consider only two-dimensional disturbances. In  this case, the 
expression for the Green function G satisfying (4.12) can be derived analytically and 
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the total unsteady velocity field can be given in terms of quadratures of known 

(4.17) 
functions. Let W(z)  = @ + i Y  

be the complex potential of the mean flow and z = x+iy. We note that the 
transformation 

T = Wi (4.18) 

maps the flow domain into the upper half of the T-plane. The body contour is 
mapped into the real axis. If we introduce the function 

F(T, ,  T )  = -In {(To - T) (To - T)) ,  (4.19) 

where the overbar denotes the complex conjugate, then 

G(T,, T )  = Re{F} (4.20) 

is the Green function satisfying (4.12). The subscript 0 denotes the observation point. 
The expression for 8, G which appears in (4.13) is then readily calculated in complex 
form, 

and the unknown function $’ is then given by 

(4.21) 

(4.22) 

where Y is the area of the plane outside the body. The velocity V$‘ cannot, however, 
be calculated directly because any derivative of V, G with respect to  x,  y will lead to 
a non-integrable quantity. But V$f can be calculated following a method outlined by 
Tikhonov & Samerskii (1963, p. 376). Thus we obtain 

(4.23) 

Ys is a circle of radius E centred a t  the point (x, y). When (2, y)  belongs t o  the body 
surface the last term of (4.23) should be replaced by -$,. Note that the numerical 
evaluation of the double integral in (4.23) must be carried out carefully as the small 
circle 9, is approached. 

Finally, recall that  the first term in (4.5) of u, is the velocity u@) which has zero 
streamwise and normal components along the body surface but whose spanwise 
component may be singular or indeterminate. However, for a two-dimensional 
problem V,G has no component in the span direction. Therefore, the integrand in 
(4.23) is regular and well defined in 9’--Ye. 

1 
V(U,. V,G)dx,dy,-~~,.  

1 Le V$‘ = --lim 
2n 8’0 

Periodic disturbances 
For periodic disturbances of the form (3.35) and (3.36), we have the following 
expressions for and J,, 

+- k, i k,( 1 + ia, U ,  k,) V[R(X)-I(X”),}eKp(-ik, U , t ) ,  (4.24) 
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where we have pu t  
1 x, = - (@i+ Yj), 

u, 
(4.26) 

x, = YIU,, (4.27) 

and E ( x )  = exp{i(k - x)}. (4.28) 

The total unsteady velocity field, 
u, + V#’, (4.29) 

is obtained by substituting (4.24) and (4.25) into (4.5) and then evaluating the 
integral (4.23). Note that in the evaluation of (4.24), the accuracy is improved 
significantly by grouping the terms which cancel each other a t  the surface and thus 
avoid the inaccuracy resulting from the large phase variation. 

We have not yet specified the shape of the body which of course enters the solution 
implicitly through G, X and X,. Expression (4.29) is therefore the most general 
solution for two-dimensional periodic disturbances convected by a potential flow 
without wake. Such potential flows represent a good approximation of real flows near 
the front part of a bluff body where the influence of the wake may be neglected (Hunt 
1973). I n  the case of an airfoil with a sharp trailing edge, the aerodynamic forces are 
strongly influenced by the wake effect and will be studied in a forthcoming paper. 

As an example we consider the flow generated by the superposition of a uniform 
flow U,  and a source a t  the origin of strength m. The complex potential for such a 
flow is 

W = @ + i Y  = U,z+mlnz+C, (4.30) 

where C is an arbitrary constant. The equation for the body surface (figure 3) is given 

(4.31) 

It is convenient to choose the constant C in (4.30) such that W vanishes at the 
stagnation point. This leads to 

C = m  1-ln- -iixm. ( a (4.32) 

The steady complex velocity is given by 

U,-iU, = U,+m/z. (4.33) 

As in many two-dimensional approximations, the potential flow velocity tends 
slowly to its upstream uniform value. To calculate the drift function A ,  one may not 
substitute U, from (4.33) into (2.12) because the integral in (2.12) does not converge. 
This difficulty can be removed by assuming that at a large distance from the 
stagnation point we have a finite body and that the velocity tends to its upstream 
uniform value as 1/1z(2 (Atassi 1984). However, it is simpler to modify the definition 
of A ,  to 

(4.34) 
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-0.8 -0.6 - 0.4 - 0.2 0.0 

FIGURE 3. The steady flow around a typical bluff body near the stagnation point. 

X 

where x,, is the abscissa of a point M,,(x,, y,,) upstream and such that Ixol % m/&. 
Equation (4.34) can be readily evaluated noting that d x / U ,  = ldz/({J, -iU2)l, and we 
gct 

d=-+--lnj x m z,+m/U, 1 .  
Note that by fixing xo, we introduce a constant phase difference in the gust which, 
for lxol 5> m/brm, will not influence the basic solution (Goldstein 1978). 

Figure 3 shows the geometry of the body. As the body extends downstream, its 
half-thickness is h = nm/Um. The upstream harmonic disturbance is characterized 
by the two wave numbers k, and k, .  Both are non-dimensionalized with respect to 

(4.35) 
U,  Urn x+m/U, 
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FIGURE 5.  Variation of the phase of the normalized unsteady pressure along the stagnation 
streamline for a typical bluff body subject to an upstream harmonic disturbance with k, = 
k,= 1. 

h. Detailed calculations were carried out for various k, and k,. The unsteady velocity 
and pressure fields were calculated a t  the intersection of the lines @ = constant and 
Y = constant. The area of integration for (4.23) is a square in the (@, !P)-plane, whose 
side is equal to about 40h. As expected from the theory, the calculated streamwise 
and normal components of the vortical velocity dR) vanish a t  the body surface. The 
total unsteady velocity is finite a t  the stagnation point. Figures 4 and 5 show the 
magnitude and the phase of the normalized unsteady pressure P = p' / (po  Urn a )  
versus the distance s along the stagnation streamline for h = 1, k, = 1 and k,  = 1 .  
The pressure is, of course, continuous but the pressure gradient has a discontinuity 
a t  the stagnation point. 

Appendix A 
Consider a surface E,  surrounding the body C and intersecting its wake W as 

shown in figure 6. Let n be the outward unit normal to C, W and C,, and let 93 be 
the region enclosed by C, W and C,. We denote by n' the unit normal on C, W and 
-Ex, directed outward of the region 9. Thus n' = n on Em and n' = - n  on Z+ W .  The 
subscript 0 will denote these vectors in the x,-space. Applying Green's theorem to the 
functions #' and G and using (3.18), (4.4)-(4.7) and the divergence theorem, we 
obtain after rearrangement 

1 +- G[(uo+Voq5').n~]du. (A 1 )  

Let pm be the minimum distance of x to E,. Then noting that as pm + 00,  laG/an/ du 
is of the order of the elementary solid angle under which duEC, is seen from x, and 
since q5' + 0 as pm + co except maybe near the wake, we conclude that 
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FIGURE 6. Schematic of the region W used in the derivation of the integral equation (A 8). 

We now assume that the upstream disturbance u, is such that 

exists. Since V - u, = 0, (A 3) implies that as pm + 00 

is finite and its value independent of Em. Since Z, is an arbitrary surface, we can take 
C, to be a sphere centred on x. In  this case, G is constant and can be factored out 
of the integral in (A 4) which then vanishes because of the divergence theorem. Thus, 

Since u, + Vo $’ is also solenoidal and tends to u, a t  large distance except maybe near 
the wake, (A 3) also implies that 

exists. Following the same proof as for (A 5 ) ,  we get 

G[(uo + V, 9’) - no] dc+ 0 as ,om + 00. 

Therefore as pm+ co, and using (3.18) and (4.5), (A 1 )  reduces to 



Unsteady disturbances of streaming motions around bodies 403 

It is convenient for evaluating the volume integral in (A 8) to add (A 3) and to use 
the divergence theorem to obtain the following expression for the integral equation 
for 4' 
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